Comparative Study of Corneal Thickness before and after FemtoLasik Surgery with Pentacam® AXL and Ultrasound Device (Tomey SP-100)

E. Pateras1* and E. Kontogeorgou2

1Biomedical Department, Course of Optics and Optometry, University of West Attica, Athens, Greece. 2Biomedical Department, Course of Optics and Optometry, Greece.

Authors’ contributions:

This work was carried out in collaboration among all authors. ‘Author A’ designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. ‘Author B’ managed the analyses of the study and the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/OR/2020/v13i330169

Received 15 June 2020
Accepted 21 August 2020
Published 31 August 2020

ABSTRACT

Aims: The purpose of our research is to evaluate corneal thickness, pre-operative and post-operatively after FemtoLasik surgery, using “Pentacam® AXL” and Ultrasound device. To evaluate the correlation of the two devices and their interchangeability.

Sample and Study Design: Our data includes 70 eyes of patients, age 19-59 years, who undergone Lasik surgery for myopia. The data concerned pre-operative and post-operative central corneal pachymetry using Ultrasound pachymeter (Tomey SP-100) and “Pentacam® AXL”.

Methodology - Place and Duration of Study: University of West Attica Dept Biomedical Science Course Optics & Optometry in collaboration with Private Ophthalmology Clinic “Athens Ophthalmologiko” during the period between May 2018 until September 2018. In this study, a comparison of data taken with Pentacam and Ultrasound was performed concerning central corneal thickness before and after FemtoLasik to evaluate the correlation of these devices. All the FemtoLasik surgeries were performed by the same experienced surgeon in order to ensure good repeatability of surgical procedures and all the patients selected had healthy eyes with no other
ophthalmic pathology or systemic disease and myopia ranging from -1.00 to 9.25 Diopters. All patients were measured one month after FemtoLasik having achieved 6/6 visual acuity.

Results: Central corneal thickness before FemtoLasik measured by ultrasound device had an arithmetic mean value of 552.43 μm ± SD 26.95. The thickness preoperatively with “Pentacam” had an arithmetic mean value of 556.26 μm ± SD 27.82. The corneal thickness after Lasik measured by ultrasound device had an arithmetic mean value of 493.21μm ± SD 36.30, while for “Pentacam” the arithmetic mean value was 499.07μm ± SD 36.17. The two devices correlate strongly (0.9218 and 0.9986 respectively with significant level P<0.0001)

Conclusion: Our conclusions after statistical analysis are that Ultrasound pachymetry and “Pentacam” topography correlated strong.

Keywords: Central corneal thickness; refractive surgery; Lasik; depth of ablation; residual stromal bed; “Pentacam”; ultrasound; corneal flap.

1. **INTRODUCTION**

In Lasik surgery in recent years, the femtosecond laser is used to create a corneal flap instead of the microkeratome [1,2]. It is a laser that emits infrared with a wavelength of 1053 mm and pulses lasting 100 - 10^{-15} sec. The femtosecond laser makes photosynthesis, a process in which the tissue is transformed into plasma that in combination with high pressure and temperature creates cavities and separates the flap from the cornea [3,4].

Contraindications to performing Lasik are, collagen-related diseases, immunosuppression, autoimmune diseases, diabetes mellitus, severe atopy, and wound healing-related diseases [2-3]. Also, patients with unstable refractive condition, ocular pathologies of the anterior segment, severe dry eye, blepharitis, choroiditis or incipient cataract are not corrected with Lasik. Other contraindications for performing Lasik are pregnancy and lactation. Lasik is an absolute contraindication for eyes with a history of herpetic keratitis, and of course in keratoconus or forme fruste keratoconus, PMD (Pellucid marginal degeneration) [4]. Particular attention should be paid to individuals with neovascularization of about 1 mm within the keratomileusis zone [4].

A basic concept is that the cornea should not be flattened less than 33.00 Diopters and curved more than 52.00 Diopters when performing FemtoLasik for myopia and hypermetropia correction respectively. Also, all candidates for Lasik should have a constant refraction for at least 12 months with a difference less than 0.50 Diopters in the same period. Patients with very thin corneas are not good candidates [4].

It is very important in refractive surgery to calculate the flap thickness preoperatively in order to safely take a decision for performing the operation or not. The remaining corneal layer, calculated from the thickness of the flap, is crucial in order not to have Lasik post-operative complications due to very thin corneas or corneal ectasia. It is important to evaluate the correlation of the two devices in order to have information in their interchangeability. A lot of studies involving central corneal thickness measurement had been presented in order to establish the best device for this measurement preoperatively but also postoperatively. Pentacam, Orbscan, Ultrasound and OCT pachymetry are the most common devices used for this purpose [5-19]. Measuring corneal thickness plays a key role in corneal refractive surgery to correct myopia. It is a key factor in patient selection and laser operation. The aim of this study was to compare central corneal thickness measurements using Scheimpflug imaging (Pentacam® AXL) compared to pre-operative and postoperative ultrasound measurements in normal myopic patients.

2. **METHODS AND MEASUREMENT DESIGN**

Our research was conducted at Private Ophthalmology Clinic “Athens Ophthalmologiko”, and the participants were 36 patients: men (38.69%) and women (61.11%). Patients ranged in age from 19-59 years with a mean of 38.03 years ± SD 10.35 (Fig. 2). All participated voluntarily, maintaining their anonymity due to the protection of their personal data. Patients underwent refractive surgery with the FemtoLasik method. Patients with ocular disease, keratoconus, or previous refractive surgery were excluded from the study. Hyperopic patients were excluded from this research. The data of
two eyes that were finally operated by the PRK method were also excluded from the sample. The final sample concerns 70 eyes that underwent FemtoLasik surgery from May 2018 until September 2018.

The measurements of the central corneal thickness before surgery, were taken with an ultrasound device (Tomey SP-100) and with “Pentacam® AXL”, (Wavelight Pentacam Oculyser). The Pentacam® AXL also determined the axial length of the eye as well as all the data of the anterior eye segment, from the anterior corneal surface to the posterior surface of the crystalline lens giving rapid and accurate results on corneal thickness and corneal topography. The ultrasound measurements were performed in collaboration with the ophthalmologist at the center. Measurements were also made for the cycloplegic refraction in order to evaluate the thickness of the flap, the size of the flap zone and the flap thickness. The flap actual thickness was recorded from the Laser report postoperatively. All the operations were performed by the same surgeon with the FemtoLasik method. The flap was separated with a femtosecond laser which was the FS 200 (Wavelight, Alcon).

The keratomileusis was performed with the excimer laser Allegretto Wave Concerto 500Hz (Wavelight AG Erlangen Germany). From the data we calculated other parameters that served us in our statistical analysis. Specifically, from the cycloplegic data we calculated the spherical equivalent from the relation:

\[
\text{Sph. Equivalent} = D_{\text{sph}} + \frac{1}{2} D_{\text{cyl}}
\]

In this sample the numerical average value of refractive error corrected was -4.05 Diopters ± 2.27. (Min. value: -1.00 Diopters / Max value: -9.25 Diopters)

The statistical analysis was performed at significance level \(p=0.05 \), which is considered particularly satisfactory for such measurements.

3. RESULTS

The sample consisted of 36 patients: men (38.69%) and women (61.11%) and their age distribution is illustrated in Fig. 1.

Pre-operative corneal thickness measured with ultrasound device and “Pentacam” topographer. The first comparison was made between the values of preoperative corneal thickness, measured by ultrasound (thickness before Ultrasound), and the values measured by topography (thickness before Pentacam) with Medcalc, for a 95% confidence interval. The thickness before Lasik measured by ultrasound device ranged from 500 m to 620 m, with a numerical average value of 552.43 μm ± SD 26.95 and median 553 μm. The thickness preoperatively with the topographic method “Pentacam® AXL” ranges from 495 μm to 612 μm, with an average value of 556.26 μm ± SD 27.82 and a median of 563 μm. Table 1 shows all this information.

\[\text{Mean: 38.06} \quad \text{Std. Dev.: 10.354} \quad \text{N:36}\]

Fig. 1. a) Distribution of men and women in the sample b) Age distribution of men and women in the sample
The thickness after FemtoLasik measured by ultrasound device ranged from 435.25 μm to 588.14 μm, with a numerical average value of 493.21 μm ± SD 36.30 and median 481.1 μm. The thickness preoperatively with the topographic method “Pentacam” ranges from 439.30 μm to 590.50 μm, with an average value of 499.07 μm ± SD 36.17 and a median of 490.5 μm. Table 2 shows all this information.

Table 1. Corneal thickness before Lasik

<table>
<thead>
<tr>
<th>Corneal thickness before Lasik</th>
<th>Pentacam</th>
<th>Ultrasound Tomey SP-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>556,2571</td>
<td>552,4286</td>
</tr>
<tr>
<td>95% CI for the mean</td>
<td>549,6237 to 562,8906</td>
<td>546,0023 to 558,8548</td>
</tr>
<tr>
<td>Variance</td>
<td>773,9619</td>
<td>726,3644</td>
</tr>
<tr>
<td>Median</td>
<td>563,00</td>
<td>553,00</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>27,8202</td>
<td>26,9511</td>
</tr>
<tr>
<td>Standard error of the mean</td>
<td>3,3251</td>
<td>3,2213</td>
</tr>
</tbody>
</table>

Paired samples t-test

Pentacam vs ultrasound

Mean difference	-3,8286
Standard deviation of mean difference	10,8641
Standard error of mean difference	1,2985
95% CI	-6,4190 to -1,23081
Test statistic t	-2.948
Degrees of Freedom (DF)	69
Two-tailed probability	P = 0.0044

Correlation

Pentacam and Ultrasound

Correlation coefficient r	0.9218
Significance level	P<0.0001
95% Confidence interval for r	0.8767 to 0.9508

Table 2. Corneal thickness after Lasik

<table>
<thead>
<tr>
<th>Corneal thickness after Lasik</th>
<th>Pentacam</th>
<th>Ultrasound Tomey SP-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>499,0664</td>
<td>493,2159</td>
</tr>
<tr>
<td>95% CI for the mean</td>
<td>490,4408 to 507,6920</td>
<td>484,5611 to 501,8707</td>
</tr>
<tr>
<td>Variance</td>
<td>1308,6231</td>
<td>1317,4994</td>
</tr>
<tr>
<td>Median</td>
<td>484,1000</td>
<td>490,8500</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>36,1749</td>
<td>36,2974</td>
</tr>
<tr>
<td>Standard error of the mean</td>
<td>4,3237</td>
<td>4,3384</td>
</tr>
</tbody>
</table>

Paired samples t-test

Pentacam vs ultrasound

Mean difference	5,8506
Standard deviation of mean difference	1,9480
Standard error of mean difference	0,2328
95% CI	5,3861 to 6,3151
Test statistic t	25,128
Degrees of Freedom (DF)	69
Two-tailed probability	P < 0.0001

Correlation

Pentacam and Ultrasound

Correlation coefficient r	0.9986
Significance level	P<0.0001
95% Confidence interval for r	0.9977 to 0.9991
Fig. 2. Box-and-whisker plot and histogram plot with corneal thickness measurements of ultrasound and pentacam respectively before Lasik. Comparison box-and-whisker plot.
Compare to other studies were Ultrasound gives higher results than Pentacam, in this study Pentacam gives slightly higher values than Ultrasound device [20].

4. CONCLUSION

The limits for the choice of refractive surgery method are being re-examined. The full interpretation of corneal ectasia is still incomplete. Careful examination of patients may reveal risk factors for the occurrence of ectasia. Corneal thickness is a key consideration of pre-operative screening, as patients with reduced corneal thickness are excluded from refractive surgery. For the FemtoLasik technique, the required minimum residual corneal thickness after flap cross-section should be at least 250-300 μm. Safety limits must be observed and monitored so that the risk of post-operative complications, such as post-operative ectasia due to high percentage tissue degradation that will affect the biochemical stability of the cornea, remains low. PRK (Photo Refractive Keratectomy) could be a safer choice in patients with thin corneas than the FemtoLasik technique which is more “invasive”. The results of this study between the measurements obtained by Pentacam and Ultrasound pachymetry in normal myopic eyes showed no significant differences in corneal thickness readings. Both devices measurements for central corneal thickness correlate strong for measurements taken before
and after Lasik refractive surgery. The correlation coefficient between them before and after FemtoLasik were 0.9218, 0.9986 respectively with significant level P<0.0001. The mean difference was -3.8286 µm and 5.8506 respectively before and after Lasik which is statistically insignificant (P = 0.0044 and P<0.0001).

CONSENT AND ETHICAL APPROVAL

As per international standard or university standard guideline participant consent and ethical approval has been collected and preserved by the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

Available: http://doi.org/10.17925/EOR.2011.11.05.01.50

DOI: 10.1097/00055735-1998080000-00002

ISBN: 0-8247-0797-4

Available: https://doi.org/10.1016/j.ajoc.2020.100608

DOI: 10.1016/j.ophtha.2006.01.063

DOI: 10.1016/j.jcrs.2007.03.028

DOI: 10.1016/j.jcrs.2007.05.040

DOI: 10.4103/2008-322X.156084

DOI: 10.1016/j.ajo.2007.08.026

DOI: 10.1016/j.ajo.2010.06.013

© 2020 Pateras and Kontogeorgou; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/60242